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Abstract-A system of linear elastic equations recently obtained for fiber reinforced composite materials is
applied to some simple problems concerning the transfer of load from the reinforcement to the matrix. The
same equations are applied to surface waves propagating in the direction of the fiber reinforcement. Since
the defined constants occurring in the above-mentioned linear equations for a two-constituent composite
material have never been measured. calculations cannot be performed, When the model is simplified
sufficiently. the effective constants in the description can be partially estimated from the known elastic
constants of the individual constituents in the composite. With the reduced equations calculations are
performed for surface waves propagating both in and normal to the direction of the fiber reinforcement.
The calculations indicate the existence of a high (optical type) as well as a low (acoustic type) surface wave
mode, both of which are dispersive. We believe the optical type mode is an analytical consequence of the
simplified model and does not actually exist. The dispersion of the acoustic type surface wave mode could
provide a means of non-destructively evaluating the integrity of a fiber reinforced composite material.

1. INTRODUCTION

In a recent investigation[l] a system of linear elastic equations for a two-constituent composite
material was obtained from a general nonlinear system for N -constituents. The general system
of nonlinear equations was obtained from a model of the composite consisting of interpenetrat
ing solid continua, in which the motion of a point of the combined continuum could be finite
while the relative motion of each of the constituents was constrained to be infinitesimal in order
that the solid composite not rupture. The aforementioned linear equations were written in
explicit detail for the isotropic and transversely isotropic symmetries. The linear elastic
equations for the two-constituent transversely isotropic composite obtained in the earlier
work[l] form the basis of the work presented here.

In this paper the aforementioned linear equations for the transversely isotropic composite
material are applied in the analysis of some simple but very interesting one-dimensional static
load transfer problems and the propagation of straight-crested surface waves. In the two
particular one-dimensional static problems considered, axial loading is applied to the fiber
reinforcement which enters the unloaded matrix. In one case both the matrix and reinforcement
are held fixed at the supporting end, while in the other case the reinforcement ends at some
distance into the matrix. In both cases the influence of gravity is included in the analysis. In
each instance the rate of transfer of stress from the reinforcement to the matrix is determined
in terms of the defined material coefficients of the two-constituent composite as a byproduct of
the solution of a simple system of ordinary differential equations with constant coefficients. The
treatment of such problems within the framework of the theory of linear elasticity is pro
hibitively complicated and such problems cannot even be mathematically defined using the
ordinary strength of materials approac;•.

In the case of surface wave propagation only the placement of fiber reinforcement parallel
to the free surface is considered. The formal solution for surface wave propagation in the
direction of the fiber reinforcement is presented. However, since the material coefficients
occurring in the theory have never been measured for any composite, a calculation cannot be
performed. Nevertheless, if the resulting theory is reduced by making the plausible simplifying
physical assumptions, for certain cases of interest, that only axial stress exists in the rein
forcement and the entire interaction depends only on the relative displacements of the
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constituents in the model, the remaining unknown constants in the description can be partially
estimated from the known ordinary elastic constants. Then by making an additional assumption,
calculations can be performed. At this point it should be noted that when the aforementioned
simplification is made, the resulting linear equations are identical with an earlier system due to
Bedford and Stern [2,3]. The aforementioned partial estimation of the unknown constants in the
simplified description is made using a procedure due to Martin, Bedford and Stern [4]. With the
material constants thus determined the dispersive surface wave velocity has been calculated for
a glass fiber reinforced phenolic resin. In this simplified theory upper (in frequency) optical type
surface wave branches are found in addition to the lower acoustic type surface wave branches.
It should be mentioned that it is felt that the upper surface wave branch that occurs in the
simplified description will not occur in the full description because in the latter case all the
independent solutions of the differential equations that remain coupled by the boundary
conditions' will probably not decay with depth. In each case treated the acoustic type surface
wave branch turns out to be asymptotic to the non-dispersive surface wave velocity of the
matrix at very long wavelengths. It should be noted that the theory employed and, of course,
solutions presented are valid only for wavelengths long compared to the spacing of the fiber
reinforcement in much the same manner that the theory of elasticity is valid only for
wavelengths large compared to a lattice spacing. However, because of the behavior of the
branches, we obtain and present results considerably beyond the range of validity of the theory.
Nevertheless, we indicate the limit of validity of the theory on each branch plotted.

2. ONE-DIMENSIONAL STATIC PROBLEMS

In this section we consider some simple but interesting one-dimensional static problems for
two-constituent transversely isotropic composite materials. In each instance the load is applied
in the preferred direction of transverse isotropy, which lies along the length of the parallel
fibers, and it is assumed that all displacement and relative displacement components transverse
to this direction are constrained to vanish and that the remaining displacement variables are
independent of the transverse coordinates. We consider only problems that satisfy these
criteria. Under these circumstances the nontrivial linear constitutive equations take the form [5]

KII = K22 = C2U3,3 +~3w~~l,
• • (I)

K 33 = C5 U3.3 + ~6W3.3,

~Il = ~22 = ~5U3,3+ 63W~~t

~33 = ~6U3,3 + 65 w~~l,

[f3 = -a2W~1),

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where X3 is the preferred direction of transverse isotropy, U3 is the non-zero displacement
component of the center of mass of the combined two-constituent composite material and W3[l]
is the non-zero component of the relative displacement of the continuum representing the
matrix. We employ Cartesian tensor notation and we have introduced the convention that a
comma followed by an index denotes partial differentiation with respect to a space coordinate,
The KLM represent the components of the stress tensor for the combined continuum and the
~LM represent the relative stress tensor which is defined by

(2,6)

where Tt\j and p(m) represent the components of the stress tensor and mass density, respec
tively, of each of the interpenetrating continua. The vector field [fM is related to the volumetric
force of interaction between the two constituents by the relation

[fM = LpJJ(l + r), (2.7)

where L PJJ is the volumetric force exerted by continuum 2 on continuum 1. At this point it is to
be noted that the TL~ and p(m) do not represent the actual components of stress and mass
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density of each of the consti~uents in the composite, but only represent those quantities in each
of the interpenetrating continua, which occupy the same region of space and, respectively,
represent each constituentin the model. As a consequence, if Am and AI represent the areas
occupied by the matrix and fibers, respectively, in a typical area A of the interpenetrating
continua normal to the fiber length, we have

(2.8)

where the variables with the superscripts m and f represent the actual respective quantities in
the matrix and fiber reinforcement, respectively. The remaining nontrivial stress equations of
equilibrium and relative stress equations of equilibrium are

where

K33,3 +ph = 0,
(lj ~

9il33•3 + ~3+p h = 0,

(2.9)

(2.10)

(2.11)

and NI) and N2
) denote the components of body force per unit mass in the continua

representing the matrix and fiber reinforcement, respectively, which in the case of the gravity
force are the same as the body force intensities h m in the matrix and H in the fiber
reinforcement, both of which equal g.

The substitution of (2.2), (2.4), (2.5) and (2.11) into (2.9) and (2.10) yields

(2.12)

(2.13)

which are the one-dimensional displacement equations of equilibrium that apply to the one
dimensional static problems treated in this section. The solution to (2.12) and (2.13) may be
written in the form

where

U3 = - ~6 (Ae-aX3 +DeaX3 )+2
1
• pgxl +BX3 + C

C5 C5

W3(1) = Ae-ax3 +DeaX3 + yg, (2.14)

(2.15)

and A, B, C and D are arbitrary constants, to be found by satisfying boundary conditions in a
given one-dimensional problem.

In the first specific problem we consider, a total compressive force P is applied to all the
fibers crossing a given cross-sectional area of a combined composite material body of height I
resting on a rigid surface, as shown in Fig. 1. Since the supporting surface is rigid, there is no
displacement in either the matrix or fibers at the support and we have

(2.16)

Since Uk is defined as the displacement of the center of mass of a point of the combined
composite continuum, we have

(2.17)

which with (2.16) enables us to write the boundary conditions

(2.18)
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Fig. I. Schematic diagram of loaded fiber reinforced composite supported on a rigid base.

Since no force is applied to the matrix at X3 = I, we have

(2.19)

where Po = PIA and which with (2.6)1 and

(2.20)

enables us to write

(2.21)

Now, the substitution of (2.14) into (2.18) and (2.21) yields

A - _ yg + KPoe-al D __ yg - KPoe
al

- 1+ e 2af ,- I + e2af ,

(2.22)

where

(2.23)

The substitution of (2.22), with (2.23), in (2.14) yields the solution. The substitution of (2.14),
with (2.22) and (2.23), into (2.1)-(2.5) yields all the stresses, relative stresses and interaction
forces, which we do not bother to write. However, in the absence of g for the actual stresses
7{3 in the fibers and 733 in the matrix at the support X3 = 0, we obtain

(2.24)

In the second specific problem, we consider fiber reinforcement entering a matrix and
terminating uniformly at a distance 1 into the matrix which continues down to a rigid support at
a distance b below the junction, as shown in Fig. 2. A total tensile force P is applied to all the
fibers crossing a given cross-sectional area. Since the continuum representing the matrix and
the continuum representing the fibers can neither separate from nor penetrate into the single
matrix continuum that abuts the composite at the junction, we must have

(2.25)

which is consistent with (2.17). In addition, the displacement U3 of the center of mass of the
combined composite continuum must be the same as the displacement U3 of the isotropic single
matrix continuum at the junction. Consequently, as kinematic boundary conditions at the
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Fig. 2. Schematic diagram of loaded fiber reinforced composite with reinforcement terminating uniformly
in matrix some distance before support.

junction we have

where U3 satisfies

and the non-trivial stress components in the single matrix continuum are given by

(2.26)

(2.27)

(2.28)

In addition to the continuity of displacement at x] = 0 we have the continuity of traction, i.e.

K]]= Tn, at x]=O.

Since no force is applied to the matrix at X3 = I, we have

TW = 0, T~~ = Po, at X3 = I,

which with (2.6)1 enables us to write the boundary conditions

K33 = Po, !?O]] = - 'Po, at X3 = I.

Since the supporting surface is rigid, we have

(2.29)

(2.30)

(2.31)

(2.32)

Thus, the boundary conditions are (2.26), (2.29), (2.31) and (2.32). The solution to (2.27) may be
written in the form

(2.33)

Now, the substitution of (2.14) and (2.33) into (2.26), (2.29), (2.31) and (2.32) yields

_ yg +Kpoe-al yg - Kpoeal

A - - 1+e 2<il , D = - 1+e:zal

(2.34)

which when substituted in (2.14) and (2.33), respectively, yields the solution. The substitution of
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(2.14) and (2.33) and (2.34) into (2.1)-(2.5) and (2.28), respectively, yields all the stresses,
relative stresses and interaction forces, which we do not bother to write. However, in the
absence of g, for the actual stresses 7~3 in the fibers and 7n in the matrix at the junction at X3 = 0, we
obtain

, , 2

7n=-EL~ [r+~6-a(6s-~6 )__K_],
I + rAm Cs Cs cosh al

, , 2

/ Po A [ {36 ( , {36) K ]733=--AT I--;;-+a bs--,- --- .
I + r A Cs Cs cosh al

(2.35)

Using a highly simplified model, the results of this analysis are presented in the Appendix in
terms of the known material constants of the fiber reinforcement and matrix and the relative
geometry.

3. SURFACE WAVES

In this section we consider surface waves propagating along the free-surface of a semi
infinite fiber reinforced composite material. Only the case of straight-crested surface waves
propagating in the direction of the fiber reinforcement, which runs. parallel to the free-surface,
is considered because the method of analysis is essentially the same for surface waves
propagating normal to the direction of the fiber reinforcement, or in any other direction for that
matter, and calculations based on the analysis are not performed because the material constants
are not presently known for any two-constituent composite material. However, in the next
section calculations are performed for surface waves propagating both in and normal to the
direction of the fiber reinforcement using a highly simplified model of the material, and it is
indicated that certain of the surface waves allowed by the simplified model will not be
permitted by the more general model considered in this section.

A schematic diagram of the free-surface of the two-constituent composite along with the
associated coordinate system is shown in Fig. 3. Since we consider straight-crested surface
waves propagating in the direction of the fiber reinforcement, which is in the x3-direction, the
solution functions are independent of X2. Furthermore, an examination of the equations for the
two-constituent transversely isotropic composite with X3 the preferred direction [5] presented in
Ref. [1] reveals that for xl"independence U2 and W2 uncouple from UI. WI. U3 and W3. Hence, under
these circumstances U2 and W2 may be taken to vanish and the non-trivial differential equations may
be written in the form

(3.1)

(3.2)

Wove
'VV---

Abers~~__~:::Z::::Z:::::Z:::Z::::Z:::::Z:::Z:::z=f=Z:::Z=Z:::Z~

Fig. 3. Schematic diagram showing surface wave propagating along a free surface of a fiber reinforced
composite and the associated coordinate system.
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and the non-trivial boundary conditions may be written in the form

KlI =K 13 = !'fl ll = !'fl13 =0 at XI =0,
where

K lI = (CI +2C3)U\,I + ({31 + (32)w\~1 + (CI + C2)U3,3 + ({31 +(33)W~~t

!'flll = ({31 + (32)UI,l +(2b l + b2)w\~1 + ({31 +{3S)U3,3 +(b2+ b3)W~~~,

K - ( ) 1{3 ( (I) + (I»13 - C4 U3,I +UI,3 +2 4 W3,I WI,3,

and everything vanishes as XI-' OO .

As a solution of the differential equations we take

which satisfies (3.1)-(3.4) provided

(QlI- pw2)A1 +QI2Bl + Q13A 3+ Q14B3 = 0,

Q21 A I + (Q22 - rpw2)B I +Q23A3 + Q24B3 = 0,

Q3I A I + Q32B 1+ (Q33 - pw2)A3+ Q34B3 = 0,

Q41AI +Q42BI + Q43A 3+(Q44 - rpw2)B3= 0,

where

I
QlI =(CI +2C3)7.,2+ C4e, Ql2 = Q21 = ({31 +(32)T/2 +2{34e,

QI3 = Q31 = (C2 + C4)T/~, Ql4 = Q41 = G{34 + {33)T/~'

Q22 = (2b l +b2)T/2 + (b4+~b7)e+ al> Q23 = Q32 = G{34 + (3s)~,

Q24 = Q42 = (b3 + b4- ~b7)~, Q33 =C4~2+ CsT/2,

Q34= Q43=~{34T/2+{36e, Q44= (b4+~b7)T/2+bs~2+a2'
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(3.3)

(3.4)

(3.5)

(3,6)

(3.7)

(3,8)

(3.9)

(3.10)

(3.11)

(3.12)

Equations (3.lt) constitute a system of four linear homogeneous algebraic equations in AI> BI>
A3 and B3, which yields non-trivial solutions when the determinant of the coefficients of A I> B I>

A 3 and B3 vanishes, i.e. when

(QlI- pw2)

Q21
Q31
Q41

QI2
(Q22- rpw2)

Q32
Q42

QI3
Q23

(Q33 - pw2)

Q43

i
1=0, (3.13)

Equation (3.13) is a quartic in w 2
, eand T/2 and, hence, for a given w and ~ there are four in
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general complex 1/z. Since the solution functions must vanish as Xl .... 00, only those 1/(n1 (n = 1,2,
3, 4) with positive imaginary part are admissible. For a given 1/(n>, three of the four eqns in
(3.11) yield amplitude ratios, which we denote

(3.14)

All four admissible solutions at a given ~ and ware required in order to satisfy the four boundary
conditions in (3.5). Consequently, we take

4
U

a
= L c(n1A

a
(n)e i1p(·)x'e i(tx3- Wt),

n=l

4
IV (1) = ~ c(n)B (n1

e
i1p(·)X'e i(tx3-Wt) 1 3

a LJ a ,a="
n~1

which satisfy (3.5) provided

4

~ c(n)L~(n1 = 0, 1234
LJ , 1=""
n=1

where

LI(n) = (CI + 2C3)1/(n)AI(n) + (131 + 13z)1/(n)B\(n) + (c. + CZ)~A3(nl + (131 + 133)~B3(n),

Lz(n) = (131 + 13z)1/(n)AI(n) + (2b l + bz)1/(n)BI(n) + (131 + 135)~A3(n) + (b z+ b3)~B3(n)

(3.15)

(3.16)

Equations (3.16) constitute four linear homogeneous algebraic equations in the C(n), and for a
non-trivial solution the determinant of the coefficients must vanish, i.e.

LI(I) L
I
(2) L/3) L

I
(4)

L z(1) Lz(Z) L
Z
(3) L

Z
(4)

=0. (3.18)L 3(1) L
3

(Z) L
3
(3) L 3(4)

Ll) L
4

(Z) Ll1 L
4
(4)

If the constants are known, a calculation proceeds by selecting values for ~ and w, which
enables the determination of the four 1/(n) from (3.13) and the attendant amplitude ratios from
(3.lt). Then everything in (3.18) is known and either it is satisfied or it is not. If (3.18) is not
satisfied, change either { or wand repeat the entire calculation until (3.18) is satisfied.
Experience with surface waves indicates that there will be one w at a given ~ that satisfies all
conditions, i.e. (3.13) and (3.18). However, since the constants are not known for any
two-constituent composite material, a calculation cannot be performed. In the next section
calculations are performed for a highly simplified version of the model for which the constants
can be estimated from the known constants of the two constituents in the composite.

4. SURFACE WAVES AND THE SIMPLIFIED MODEL

In this section we simplify the equations for the two-constituent transversely isotropic
composite by reducing the model sufficiently that the material constants of the composite can
be estimated from the known constants of the individual constituents of the composite while
still retaining certain of the essential characteristics of the composite. Since in the simplified
model the constants are essentially known, calculations can be and, indeed, are performed for
surface waves propagating in two-constituent transversely isotropic composite materials. The
simplified model we are considering is for a fiber reinforced composite material consisting of an
elastic matrix containing uniformly distributed continuous fibers extending in the x3-direction,
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in which the fibers occupy a small fraction of the total composite volume. On account of the
latter condition in the reduced model it is assumed that the stresses in the matrix are related to
the strains in the matrix by the constitutive relations of linear isotropic elasticity and are
independent of the strains in the fibers. Similarly, the stresses in the fibers are assumed to be
independent of the strains in the matrix. It is further assumed that all stress components in the
long narrow fibers vanish save the axial stress TW, which may then be written as a function of
the axial strain in the fibers only. Although this latter assumption seems questionable to us in
general we make it anyway. Then the only interaction between the matrix and the fibers
remaining is the volumetric interaction term LpU, which from (2.5) and (2.7) takes the form [5]

(4.1)

At this point it should be noted that the aforementioned assumptions make the reduced model
for the linear case identical with that of Martin, Bedford and Stern [4].

On account of the assumptions made in the simplified model of the two-constituent
composite, it is advantageous to write the equations in terms of the infinitesimal displacement
fields of each constituent instead of the center of mass and relative displacement fields. To this
end we write[6]

(4.2)

which with the three-dimensional version of (2.17)

(4.3)
enables us to write

(4.4)

From (2.6)1 and (2.20) we obtain

(4.5)

Substituting from (4.4) into the constitutive equations for the two-constituent isotropic
composite [7] and then into (4.5), and introducing the aforementioned assumptions of in
dependence of the stress in the matrix continuum on the strain in the fiber continuum and vice
versa, which introduces relations among the more generally defined material constants, and the
further assumption of uniaxial stress in the fiber continuum, we obtain

T~lt = A(I)U~~Ke5LM + P,(I)(U~!M + u<J.L>,

T~lt = E(2)U~:~e5LM' (4.6)

where A(I) and p, (I) are the Lame constants of the matrix continuum and E(2) is Young's modulus
for the fiber continuum, which are related to the respective constants in the matrix and fibers by

(4.7)

Since the fiber reinforcement in this simplified model is restricted to occupy a small fraction of
the total composite volume, (4.7) enables us to write

A(I) = Am, p, (I) = p, m, E(2) = EINSI, (4.8)

where Sl is the cross-sectional area of each fiber and N is the number of fibers per unit area. In
order to complete the constitutive equations for the reduced model we substitute from (4.4) into
(4.1) to obtain

(4.9)

USS Vol. 14. No. 3-E
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(4.10)

The stress and relative stress equations of motion in the absence of body and relative body
forces take the respective forms

which with (2.6), (2.7), (2.20) and (4.4) enables us to write

T2l.r.L +LpM
I2 = P(I)UM(ll,

• T~l.r.L - LpMI2 = P(2)UM(2),

the latter of which, on account of the assumption of uniaxial stress in the fibers yields

Substituting from (4.6) and (4.9) into (4.12) and (4.14) and employing (4.8), we obtain

(A m + /-L m)U}.!!KL + /-L mu 2.k:K+ at(uL(2) - UL(I) + (a2 - al)(uL(2) - uL(1»83L = p(llih(l),

E(2)U~:~38L3+ al(uL(I) - UL(2» + (a2 - al)(uL(I) - UL(2»8L3 = P(2)UL(2l,

(4.11)

(4.12)

(4.13)

(4.14)

( 4.15)

(4.16)

which are the displacement equations of motion of this highly simplified model of the
two-constituent composite material. Equations (4.15) and (4.16) are identical with the equations
of Martin, Bedford and Stern [4], who have provided an approximate procedure for estimating
the constant a2 in terms of the known constants of the individual constituents in the composite
and the geometry. Their analysis provides the result

(4.17)

where
(4.18)

and 8 is the fiber radius, h is the radius of a cylinder, each of which encloses a single fiber in
the hexagonal array and abuts all adjacent cylinders, s is the fiber spacing and /-L m and /-L fare
the shear moduli of the matrix and fiber material, respectively. However, the constant al still
remains undetermined in this simplified description and it does not appear to be possible to
estimate it in some approximate manner because an appropriate problem yielding a simple
solution of a full linearly elastic boundary value problem cannot be found. Nevertheless, since
we are introducing this highly limited simplified description in order to obtain some numerical
results, we take the rather aroitrary course of assuming that at = a2. Under these circum
stances all material constants in the equations are known and calculations can readily be
performed.

As in the case of the more general model, in the consideration of straight-crested surface
waves propagating in the direction of the fiber reinforcement (x3-direction), the solution
functions are independent of X2 and U2(1) and U2(2) vanish. Under these circumstances we have
the differential eqns (4.15) and (4.16), with x2-independence understood and U2(1) = U2(2) = 0,
along with the non-trivial boundary conditions

(4.19)

Since T11) and Tlr vanish identically in the simplified model, we have only the two non-trivial
boundary conditions

(4.20)
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It is our belief that the foregoing is essentially the reason that the surface wave solutions in the
simplified model yield upper (optical type) surface wave branches, which we feel will not be in
conformity with results that would be obtained from the more general model.

As a solution of the differential equations we take

which satisfies (4.15) and (4.16) provided

(P II - pOlw2)A I- iilBI - P\3A3 = 0,

- vAl X (iiI - p121w2)B1= 0,

P31A l + (Pn - pll)w2)A3 - ii2B3 = 0,

- ii2A3+(P44 - p121w 2)B3 = 0,

where

P II = (Am +2~m)712+ ~me+ iiI> P\3 = P31 = (Am + ~m)71€,

P33 = + ~m712+ (A m+2~m)e+ ii2, P44 = E121e+ ii2•

(4.21)

(4.22)

(4.23)

Equations (4.22) constitute a system of linear, homogeneous algebraic equations in A .. BI> A3

and B3, which yields non-trivial solutions when the determinant of the coefficients of AI> A 3, B l

and B3 vanishes, Le. when

P
II

_ pOlw2 - iiI P\3 0
- iiI ii l - pl21w2 0 0 =0. (4.24)
P31 0 P33 - pll)w2 - il2

0 0 - ii2
P

44
- pl21w2

Equation (4.24) is quadratic in 712, cubic in €2 and quartic in w 2
, and, hence, for a given wand €

there are two in general complex 71 2. Since the solution functions must vanish as XI-+ OO, only
those 711nl(n = 1, 2) with positive imaginary part are admissible. For a given 711nl three of the four
equations in (4.22) yield amplitude ratios, which we denote

(4.25)

Since only two non-trivial boundary conditions remain in (4.20), the two admissible solutions
are adequate and we take

2
ua(l) = L c lnlA

a
lnIe i.,lnlx1e iUX3-0lt),

n=1

2
U

a
121 = L Cln)B

a
(nle1.,ln lX1e ilEx3-0lt),

n=1

which satisfy (4.20) provided

2L clnl[i711nl(A m+ 2~m)Al(n) + iA m€A31nl] = 0,
n=1

2L Clnl[i€A/nl+ i71(nlA31nl] = O.
n=1

(4.26)

(4.27)

At this point it should be noted that on account of the simplified model eqns (4.27) do not contain
the Ba

ln). Equations (4.27) constitute two linear homogeneous algebraic equations in COl and
C(2), and for a non-trivial solution the determinant of the coefficients must vanish, Le.

I
(A m+ 2~m)71(1)A I(I) + Am€A3(1)

€A1ll) + 1J(lJA30 )
(4.28)
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Equation (4.28) is a complex algebraic equation, both the real and imaginary parts of which
must vanish simultaneously. Solutions, i.e. values of w and ~ satisfying (4.24) and (4.28) are
found numerically in a manner similar to that discussed in the paragraph following eqn (3.18).

Calculations have been performed for a set of material parameters corresponding to a glass
fiber reinforced phenolic resin[4], the relevant constants of which are

pm = 0.OOO13lb-sec2/in4,

pi = 0.OOO26Ib-sec2/in4,

Am = 0.86 X 106 Ib/in2,

EI = 12.4 X 106 Ib/in2,

JLI = 10.2 X 106 Ib/in2,

JL m = 0.37 X 106 Ib/in2, (4.29)

for a fiber diameter of 0.01 in. for the volume percentage of reinforcement of 5.67%, which
corresponds to s = 0.04 in. The re!i.ults of the calculations are plotted in Fig. 4, which indicates
the existence of an upper (optical type) surface wave branch in addition to the lower (acoustic
type) branch. As already noted, we do not believe that the upper surface wave branch actually
exists, but that its existence is a consequence of the reduced coupling in the simplified model. A
similar analysis has been performed for straight-crested surface waves propagating normal to
the direction of the fiber reinforcement and the results of calculations based on this analysis are
plotted in Fig. 5. Again the results indicate the existence of an upper as well as a lower branch
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Fig. 4. Dispersion curves for surface waves propagating in the direction of the fiber reinforcement.
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Fig. 5. Dispersion curves for surface waves propagating normal to the direction of the fiber reinforcement.

- 10
<D

Q
"
3

>
u
Z
UJ

5 5
UJ
a:u.



Load transfer in fiber reinforced composite materials

2.ar------------------,

I.

5.67%

14---propagotion in direction
of reinforcement

0.5

WAVE NUMBERe
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and we do not believe that the upper branch actually exists for the aforementioned reasons. In
Figs. 4 and 5 we have drawn vertical lines which correspond to a wavelength five times the
spacing of the fiber reinforcement. We do not believe the curves to be valid much beyond these
vertical lines because of the nature of the model of the composite we have employed, and we
draw them considerably beyond their range of validity simply to indicate the calculated
behavior. The important curves in Figs. 4 and 5 are the lower acoustic type branches, both of
which are drawn to a larger scale in Fig. 6. Note the difference in dispersion for the two
directions of propagation considered. This very precise dispersion property of surface waves
could well be used as a means of non-destructively evaluating the distribution of the fiber
reinforcement in and the integrity of the bonding to the matrix.
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APPENDIX
In this Appendix we present the solution to the second problem treated in Section 2, i.e. the one associated with Fig. 2,

using the reduced equations presented in Section 4 and omitting the influence of gravity. In this case the differential eqns
(4.15) and (4.16) with L = 3 and the constitutive eqns (4.6) with L = M = 3 and (4.9h, all in the absence of any
xl-xz-dependence and inertial terms, respectively replace eqns (2.12), (2.13), (2.2), (2.4) and (2.5). Equations (2.27), (2.28), (2.30)
and (2.32) remain unchanged and (2.26) and (2.29) are replaced by

UJ(l)=UJl2l, UJ(1) = UJ at xJ=O.

TH)+ Tji! = TJ3, at xJ=O.

(AI)

(A2)
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The solution functions given in (2.14) and (2.33) are replaced by

where

Substituting from (A3) into (A I), (A2), (2.30) and (2.32), we obtain

c - Pob C - Q C =~
I - Am + 21£ m, 2 - al'PO' 3 2cosh al'

C4=~ C-~ C----.1?9-
2 cosh al' l - Am +21£ m' 6 - Am +21£ m'

where
~ = l/a(A m +2/Lm +E(2».

The actual stresses T{3 in the fibers and Tn in the matrix at the junction are given by

, _ Po' [E(21 Am + 2/Lm]
Tn- Am +2/Lm +E(2) + coshal '

(p 'A'/A)(A m+2"m) [ I]T m _ 0 ,.. 1
33 - Am + 21£ m+ E(2) - cosh al '

where
Po' = PoA/A', £<2) = E'A'/A,

and Po' denotes the actual stress in the fibers before they enter the matrix.

(A3)

(A4)

(A5)

(A6)

(A7)

(AS)


